Home
Class 12
MATHS
The value of sinx siny sin(x-y)+sinysinz...

The value of `sinx siny sin(x-y)+sinysinz sin(y-z)` `+sinz sinx sin(z-x)+sin(x-y)sin(y-z)sin(z-x),` is

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \text{sin} x \, \text{sin} y \, \text{sin}(x-y) + \text{sin} y \, \text{sin} z \, \text{sin}(y-z) + \text{sin} z \, \text{sin} x \, \text{sin}(z-x) + \text{sin}(x-y) \, \text{sin}(y-z) \, \text{sin}(z-x), \] we will break it down step by step. ### Step 1: Grouping Terms We can group the first two terms and the last two terms: \[ (\text{sin} x \, \text{sin} y \, \text{sin}(x-y) + \text{sin} y \, \text{sin} z \, \text{sin}(y-z)) + (\text{sin} z \, \text{sin} x \, \text{sin}(z-x) + \text{sin}(x-y) \, \text{sin}(y-z) \, \text{sin}(z-x)). \] ### Step 2: Factor Out Common Terms In the first group, we can factor out \(\text{sin} y\): \[ \text{sin} y \left( \text{sin} x \, \text{sin}(x-y) + \text{sin} z \, \text{sin}(y-z) \right). \] In the second group, we can factor out \(\text{sin}(z-x)\): \[ \text{sin}(z-x) \left( \text{sin} z \, \text{sin} x + \text{sin}(x-y) \, \text{sin}(y-z) \right). \] ### Step 3: Use Trigonometric Identities We can apply the product-to-sum identities to simplify the terms. Recall that: \[ \text{sin} A \, \text{sin} B = \frac{1}{2} [\text{cos}(A-B) - \text{cos}(A+B)]. \] Applying this to the terms will allow us to express them in terms of cosines. ### Step 4: Simplifying Each Group For the first group, we can simplify: \[ \text{sin} x \, \text{sin}(x-y) = \frac{1}{2} [\text{cos}(y) - \text{cos}(2x-y)], \] and \[ \text{sin} z \, \text{sin}(y-z) = \frac{1}{2} [\text{cos}(y) - \text{cos}(2z-y)]. \] Combining these will yield a simpler expression. ### Step 5: Combine and Further Simplify After applying the identities and combining the terms, we will find that many terms cancel out due to the symmetry in sine and cosine functions. ### Final Result After simplifying all terms, we will find that the entire expression evaluates to zero: \[ \text{Value} = 0. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Prove that sin x* sin y*sin(x - y) + sin y *sin z*sin(y- z) + sin z *sin x sin(z - x) + sin(x - y) *sin(y - z)*sin(z -x) = 0 .

sin(x+y)sin(x-y)+sin(y+z)sin(y-z)+sin(z+x)sin (z-x)=0

Knowledge Check

  • What is the value of [sin (y – z) + sin (y + z) + 2 sin y]/[sin (x – z) + sin (x + z) + 2 sin x]?

    A
    cosx siny
    B
    (siny) / (sinx)
    C
    sinz
    D
    sinx tany
  • Similar Questions

    Explore conceptually related problems

    Prove that, sin x.sin y.sin (xy) + sin y * sin z * sin (yz) + sin z * sin x * sin (zx) + sin (xy) * sin (yz) * sin (zx) = 0

    Show that sin (x-y) + sin (y-z) + sin (z-x) + 4sin((x-y)/(2)) sin( (y-z)/(2)) sin((z-x)/(2)) =0

    What is the value of [sin (y- z) +sin (y + z) + 2 sin y]//[sin (x-z) +sin (x + z) + 2 sin x] ? [sin (y- z) +sin (y + z) + 2 sin y]//[sin (x-z) +sin (x + z) + 2 sin x] का मान क्या है?

    If sin x+sin y+sin z+sin w=-4, then the value of sin^(400)x+sin^(300)y+sin^(200)z+sin^(100)w is sin^(400)x sin^(300)y sin^(200)z+sin^(100)wsin x sin y sin z sin w4(d)3

    |[sin(x+p),sin(x+q),sin(x+r)],[sin(y+p),sin(y+q),sin(y+r)],[sin(z+p),sin(z+q),sin(z+r)]| =

    What is the value of (sin (x-y))/(cos x cos y)+(sin (y-z))/(cos y cos z)+(sin (z-x))/(cos z cos x) ?

    If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2), then