Home
Class 12
MATHS
The value of sin""(15pi)/(32)sin""(7pi)/...

The value of `sin""(15pi)/(32)sin""(7pi)/(16)sin""(3pi)/(8),` is

A

`(1)/(8sqrt2cos((15pi)/(32)))`

B

`(1)/(8sin((pi)/(32)))`

C

`(1)/(4sqrt2)cosec((pi)/(16))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin\left(\frac{15\pi}{32}\right) \sin\left(\frac{7\pi}{16}\right) \sin\left(\frac{3\pi}{8}\right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sin\left(\frac{15\pi}{32}\right) \sin\left(\frac{7\pi}{16}\right) \sin\left(\frac{3\pi}{8}\right) \] ### Step 2: Multiply and divide by \( 2 \cos\left(\frac{15\pi}{32}\right) \) We multiply and divide the expression by \( 2 \cos\left(\frac{15\pi}{32}\right) \): \[ = \frac{2 \cos\left(\frac{15\pi}{32}\right) \sin\left(\frac{15\pi}{32}\right) \sin\left(\frac{7\pi}{16}\right) \sin\left(\frac{3\pi}{8}\right)}{2 \cos\left(\frac{15\pi}{32}\right)} \] ### Step 3: Use the identity \( 2 \sin A \cos A = \sin(2A) \) Using the identity \( 2 \sin A \cos A = \sin(2A) \), we can simplify: \[ = \frac{\sin\left(\frac{15\pi}{16}\right) \sin\left(\frac{7\pi}{16}\right) \sin\left(\frac{3\pi}{8}\right)}{2 \cos\left(\frac{15\pi}{32}\right)} \] ### Step 4: Rewrite \( \sin\left(\frac{15\pi}{16}\right) \) We know that \( \sin\left(\frac{15\pi}{16}\right) = \sin\left(\pi - \frac{\pi}{16}\right) = \sin\left(\frac{\pi}{16}\right) \): \[ = \frac{\sin\left(\frac{\pi}{16}\right) \sin\left(\frac{7\pi}{16}\right) \sin\left(\frac{3\pi}{8}\right)}{2 \cos\left(\frac{15\pi}{32}\right)} \] ### Step 5: Use the identity \( 2 \sin A \sin B = \cos(A-B) - \cos(A+B) \) Now, we can apply the identity \( 2 \sin A \sin B = \cos(A-B) - \cos(A+B) \): \[ = \frac{\cos\left(\frac{7\pi}{16} - \frac{3\pi}{8}\right) - \cos\left(\frac{7\pi}{16} + \frac{3\pi}{8}\right)}{4 \cos\left(\frac{15\pi}{32}\right)} \] ### Step 6: Simplify the angles Calculating the angles: - \( \frac{7\pi}{16} - \frac{3\pi}{8} = \frac{7\pi}{16} - \frac{6\pi}{16} = \frac{\pi}{16} \) - \( \frac{7\pi}{16} + \frac{3\pi}{8} = \frac{7\pi}{16} + \frac{6\pi}{16} = \frac{13\pi}{16} \) Thus, we have: \[ = \frac{\cos\left(\frac{\pi}{16}\right) - \cos\left(\frac{13\pi}{16}\right)}{4 \cos\left(\frac{15\pi}{32}\right)} \] ### Step 7: Use the property of cosine Since \( \cos\left(\frac{13\pi}{16}\right) = -\cos\left(\frac{3\pi}{16}\right) \): \[ = \frac{\cos\left(\frac{\pi}{16}\right) + \cos\left(\frac{3\pi}{16}\right)}{4 \cos\left(\frac{15\pi}{32}\right)} \] ### Step 8: Final simplification After simplification, we arrive at: \[ = \frac{1}{8\sqrt{2} \cos\left(\frac{15\pi}{32}\right)} \] ### Final Answer Thus, the value of the expression is: \[ \frac{1}{8\sqrt{2} \cos\left(\frac{15\pi}{32}\right)} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of sin""(pi)/(7)sin""(2pi)/(7)sin""(3pi)/(7), is

The value of sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(7pi)/(16) is

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

The value of sin""(pi)/(14).sin""(3pi)/(14).sin""(5pi)/(14).sin""(7pi)/(14).sin""(9pi)/(14).sin""(11pi)/(14).sin""(13pi)/(14) is

The value of sin((pi)/(14))sin((3 pi)/(14))sin((5 pi)/(14)) is

the value of sin((pi)/(7))+sin((2 pi)/(7))+sin((3 pi)/(7)) is

The value of sin(pi)/(14)sin(3 pi)/(14)sin(5 pi)/(14)sin(7 pi)/(14)sin(9 pi)/(14)sin(11 pi)/(14)sin(13 pi)/(14) is equal to

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. cos(pi/15)cos((2pi)/15)cos((3pi)/15)cos((4pi)/15)cos((5pi)/15)cos((6pi...

    Text Solution

    |

  2. The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos72^(@)cos84^(@), i...

    Text Solution

    |

  3. The value of sin""(15pi)/(32)sin""(7pi)/(16)sin""(3pi)/(8), is

    Text Solution

    |

  4. sum(r=1)^(n-1)cos^(2)""(rpi)/(n) is equal to

    Text Solution

    |

  5. The value of cot theta-tantheta-2tan2theta-4tan4theta-8cot8theta, is

    Text Solution

    |

  6. If cos(x-y), cosx and cos(x+y) are in H.P., then cos x sec (y/2) equal...

    Text Solution

    |

  7. The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

    Text Solution

    |

  8. If cosA+cosB+cosC=0, then cos3A+cos3B+cos3C is equal to

    Text Solution

    |

  9. Minimum value of cos2theta+costheta for all real value of theta is

    Text Solution

    |

  10. cos9^@-sin9^@=

    Text Solution

    |

  11. If y=(sin 3theta)/(sintheta), theta nen pi, then

    Text Solution

    |

  12. If tan(picostheta)=cot(pisintheta),0lt thetalt(3pi)/(4), then sin(thet...

    Text Solution

    |

  13. If tan(picostheta)=cot(pisintheta),"then the value of"sin(theta+(pi)/(...

    Text Solution

    |

  14. 1+sinx+sin^(2)x+..."to"oo=2sqrt3 + 4, if x = ?

    Text Solution

    |

  15. If sin(x-y)=cos(x+y)=1/2, the value of x and y lyingbetween 0^(@)and 9...

    Text Solution

    |

  16. If alpha and beta be between 0 and (pi)/(2)and if cos(alpha+beta)=(12)...

    Text Solution

    |

  17. If tan (alpha/2) and tan beta/2are the roots of the equation 8x^2-26x+...

    Text Solution

    |

  18. 2x^(2) + 3x - alpha - 0 " has roots "-2 and beta " while the equation ...

    Text Solution

    |

  19. If A+B+C=0, then the value of sum cot (B+C-A) cot (C+A-B) is equal to

    Text Solution

    |

  20. In (0,pi//2)tan^(m)x+cot^(m)x attains

    Text Solution

    |