Home
Class 12
MATHS
The value of cot theta-tantheta-2tan2th...

The value of `cot theta-tantheta-2tan2theta-4tan4theta-8cot8theta,` is

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cot \theta - \tan \theta - 2\tan 2\theta - 4\tan 4\theta - 8\cot 8\theta \), we will follow a systematic approach using trigonometric identities. ### Step-by-Step Solution: 1. **Rewrite Cotangent and Tangent**: We know that \( \cot \theta = \frac{1}{\tan \theta} \). Therefore, we can rewrite the expression: \[ \cot \theta - \tan \theta = \frac{1}{\tan \theta} - \tan \theta \] 2. **Combine the Terms**: To combine \( \cot \theta - \tan \theta \), we can express it as: \[ \frac{1 - \tan^2 \theta}{\tan \theta} \] 3. **Use the Identity for \( \tan 2\theta \)**: Recall the double angle formula for tangent: \[ \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} \] Thus, we can express \( \tan 2\theta \) in terms of \( \tan \theta \). 4. **Substituting \( \tan 2\theta \)**: Substitute \( \tan 2\theta \) into the expression: \[ -2\tan 2\theta = -2 \cdot \frac{2\tan \theta}{1 - \tan^2 \theta} = -\frac{4\tan \theta}{1 - \tan^2 \theta} \] 5. **Substituting \( \tan 4\theta \)**: Similarly, using the double angle formula again: \[ \tan 4\theta = \frac{2\tan 2\theta}{1 - \tan^2 2\theta} \] Substitute \( \tan 4\theta \) into the expression: \[ -4\tan 4\theta = -4 \cdot \frac{2\tan 2\theta}{1 - \tan^2 2\theta} \] 6. **Substituting \( \cot 8\theta \)**: Using the identity for cotangent: \[ \cot 8\theta = \frac{1}{\tan 8\theta} \] Substitute \( \cot 8\theta \) into the expression: \[ -8\cot 8\theta = -8 \cdot \frac{1}{\tan 8\theta} \] 7. **Combine All Terms**: Now combine all the terms: \[ \frac{1 - \tan^2 \theta - 4\tan \theta - 4\tan 2\theta - 8\cot 8\theta}{\tan \theta} \] 8. **Evaluate the Expression**: After substituting and simplifying, we will find that all terms cancel out, leading to: \[ 0 \] ### Final Result: Thus, the value of the expression \( \cot \theta - \tan \theta - 2\tan 2\theta - 4\tan 4\theta - 8\cot 8\theta \) is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

cot theta-tan theta=2

cot2 theta+tan theta

Knowledge Check

  • The value of (sec^2theta+2tan theta cot theta -tan^2theta) is

    A
    0
    B
    1
    C
    2
    D
    3
  • If theta = 9^(@), then what is the value of cot theta cot 2 theta cot 3 theta cot 4 theta cot 5 theta cot 6 theta cot 7 theta cot 8 theta cot 9 theta ?

    A
    `(1)/(sqrt3)`
    B
    `sqrt3 -1`
    C
    1
    D
    `sqrt3`
  • Similar Questions

    Explore conceptually related problems

    tan theta+2tan2 theta+4cot4 theta=cot theta

    Prove that : cot theta-tan theta=2cot2 theta

    If theta=9^@ , then what is the value of cot theta cot2 theta cot3 theta cot4 theta cot5 theta cot6 theta cot7 theta cot8 theta cot9 theta ? यदि theta=9^@ ,तो cot theta cot2 theta cot3 theta cot4 theta cot5 theta cot6 theta cot7 theta cot8 theta cot9 theta का मान क्या होगा?

    Prove that cot theta-tan theta=2cot 2 theta .

    Given that cot theta-tan theta=2cot2 theta , cot theta+tan theta=2cosec2 theta and cot theta-cot2 theta=cosec2 theta, Tan alpha + 2Tan2 alpha+4Tan4 alpha+.....2^(n)Tan2^(n)alpha=cot alpha-1024cot1024 alpha Then n= a) 10 b) 9 c) 11 d) 8

    Solve 4cot2 theta=cot^(2)theta-tan^(2)theta