Home
Class 12
MATHS
Let thetain(0,pi//4)and t(1)=(tantheta)...

Let `thetain(0,pi//4)and t_(1)=(tantheta)^(tantheta), t_(2)=(tantheta)^(cottheta),t_(3)=(cot theta)^(tantheta)and t_(4)=(cot theta)^(cot theta).` Then,

A

`t_(1)gtt_(2)gtt_(3)gtt_(4)`

B

`t_(4)gtt_(3)gtt_(1)gtt_(2)`

C

`t_(3)gtt_(1)gtt_(2)gtt_(4)`

D

`t_(2)gtt_(3)gtt_(1)gtt_(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expressions for \( t_1, t_2, t_3, \) and \( t_4 \) based on the given range for \( \theta \) (from \( 0 \) to \( \frac{\pi}{4} \)). ### Step 1: Define the expressions We have: - \( t_1 = (\tan \theta)^{\tan \theta} \) - \( t_2 = (\tan \theta)^{\cot \theta} \) - \( t_3 = (\cot \theta)^{\tan \theta} \) - \( t_4 = (\cot \theta)^{\cot \theta} \) ### Step 2: Analyze the values of \( \tan \theta \) and \( \cot \theta \) In the interval \( \theta \in [0, \frac{\pi}{4}] \): - \( \tan \theta \) varies from \( 0 \) to \( 1 \). - \( \cot \theta = \frac{1}{\tan \theta} \) varies from \( \infty \) (as \( \theta \) approaches \( 0 \)) to \( 1 \) (at \( \theta = \frac{\pi}{4} \)). ### Step 3: Compare \( t_1 \) and \( t_2 \) - Since \( \tan \theta < 1 \) in this interval, \( t_1 = (\tan \theta)^{\tan \theta} < 1 \). - \( \cot \theta > 1 \) implies \( t_2 = (\tan \theta)^{\cot \theta} \) is of the form \( (x < 1)^{y > 1} \), which is also less than \( 1 \) but greater than \( t_1 \). - Therefore, \( t_1 < t_2 \). ### Step 4: Compare \( t_3 \) and \( t_4 \) - \( t_3 = (\cot \theta)^{\tan \theta} \) where \( \cot \theta > 1 \) and \( \tan \theta < 1 \), thus \( t_3 > 1 \). - \( t_4 = (\cot \theta)^{\cot \theta} \) where both base and exponent are greater than \( 1 \), thus \( t_4 > t_3 \). ### Step 5: Compare \( t_3 \) and \( t_1 \) - We have established that \( t_1 < t_2 \) and \( t_3 > 1 \). - Since \( t_1 < 1 \) and \( t_3 > 1 \), it follows that \( t_3 > t_1 \). ### Step 6: Combine the results From the comparisons, we have: 1. \( t_1 < t_2 \) 2. \( t_3 > t_1 \) 3. \( t_4 > t_3 \) Thus, we can summarize the relationships as: \[ t_2 > t_1 \quad \text{and} \quad t_3 > t_1 \quad \text{and} \quad t_4 > t_3 \] ### Final Order Putting it all together, we get: \[ t_4 > t_3 > t_1 > t_2 \] ### Conclusion The correct relationship is \( t_4 > t_3 > t_1 > t_2 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Let theta in(0,(pi)/(4)) and t_(1)=(tan theta)^(tan theta),t_(2)=(tan theta)6(cot theta),t_(3)=(cot theta)^(tan theta) and t_(4)=(cot theta)^(cot theta) then

Let theta in ( 0, pi/4) and t_1 = (tan theta)^(tan theta),t_2 = (tan theta)^(cot theta), t_3 = ( cot theta)^(tan theta), t_4=(cot theta)^(cot theta), then

tantheta . Cot theta =

Prove that : (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta" cosec "theta

Solve: cot2theta=tantheta

(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta=sectheta"cosec"theta+1

Solve: (1-tantheta)(1+sin2theta)=(1+tantheta)

int(sectheta)/(sec theta+tantheta)d theta=

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  2. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  3. Let thetain(0,pi//4)and t(1)=(tantheta)^(tantheta), t(2)=(tantheta)^(...

    Text Solution

    |

  4. The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha) is equal...

    Text Solution

    |

  5. The minimum value of (1)/(3sintheta-4costheta+7), is

    Text Solution

    |

  6. The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

    Text Solution

    |

  7. If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) the...

    Text Solution

    |

  8. cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

    Text Solution

    |

  9. If tanx=b/athen sqrt((a+b)/(a-b"))+sqrt((a-b)/(a+b))=

    Text Solution

    |

  10. In tantheta+sec theta=sqrt3,0ltthetaltpi, then theta is equal to

    Text Solution

    |

  11. If sqrt3sin theta+costhetagt0, then theta lies in the interval

    Text Solution

    |

  12. Let 0lt x lepi//4, (sec 2x-tan2x) equals

    Text Solution

    |

  13. If n is an odd positive interger, then ((cosA+cosB)/(sinA-sinB))^(n)...

    Text Solution

    |

  14. If 3 tan (theta-15^(@))=tan(theta+15^(@)), 0lt thetalt pi,then theta=

    Text Solution

    |

  15. If (cos theta)/(a)=(sintheta)/(b), then (a)/(sec 2 theta)+(b)/(cosec 2...

    Text Solution

    |

  16. If a=tan27theta-tantheta and b=(sin theta)/(cos3theta)+(sin3theta)/(co...

    Text Solution

    |

  17. Find the no. of integral values of k for which the equation 7cosx+5sin...

    Text Solution

    |

  18. If A = sin^2 theta+ cos^4 theta, then for all real values of theta

    Text Solution

    |

  19. The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

    Text Solution

    |

  20. The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

    Text Solution

    |