Home
Class 12
MATHS
For all values of theta,3-costheta+cos(t...

For all values `of theta,3-costheta+cos(theta+(pi)/(3))` lie in the interval

A

`[-2,3]`

B

`[-2,1]`

C

`[2,4]`

D

`[1,5]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \(3 - \cos \theta + \cos \left( \theta + \frac{\pi}{3} \right)\) and determine the interval it lies in for all values of \(\theta\). ### Step-by-Step Solution: **Step 1: Rewrite the expression using the cosine addition formula.** The cosine addition formula states that: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Applying this to \(\cos \left( \theta + \frac{\pi}{3} \right)\): \[ \cos \left( \theta + \frac{\pi}{3} \right) = \cos \theta \cos \frac{\pi}{3} - \sin \theta \sin \frac{\pi}{3} \] Since \(\cos \frac{\pi}{3} = \frac{1}{2}\) and \(\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}\), we have: \[ \cos \left( \theta + \frac{\pi}{3} \right) = \cos \theta \cdot \frac{1}{2} - \sin \theta \cdot \frac{\sqrt{3}}{2} \] **Step 2: Substitute back into the expression.** Now substituting this back into our original expression: \[ 3 - \cos \theta + \left( \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \right) \] This simplifies to: \[ 3 - \cos \theta + \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta = 3 - \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \] **Step 3: Combine like terms.** Now we can combine the cosine terms: \[ 3 - \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \] **Step 4: Identify the coefficients for the A cos θ + B sin θ form.** Let \(A = -\frac{1}{2}\) and \(B = -\frac{\sqrt{3}}{2}\). The expression can be rewritten as: \[ 3 + A \cos \theta + B \sin \theta \] **Step 5: Find the range of \(A \cos \theta + B \sin \theta\).** The maximum and minimum values of \(A \cos \theta + B \sin \theta\) can be found using the formula: \[ \sqrt{A^2 + B^2} \] Calculating \(A^2 + B^2\): \[ A^2 = \left(-\frac{1}{2}\right)^2 = \frac{1}{4}, \quad B^2 = \left(-\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] Thus, \[ A^2 + B^2 = \frac{1}{4} + \frac{3}{4} = 1 \] So, \[ \sqrt{A^2 + B^2} = \sqrt{1} = 1 \] **Step 6: Determine the range of the entire expression.** The expression \(A \cos \theta + B \sin \theta\) will range from \(-1\) to \(1\). Therefore, the entire expression \(3 + A \cos \theta + B \sin \theta\) will range from: \[ 3 - 1 \quad \text{to} \quad 3 + 1 \] This gives us: \[ 2 \quad \text{to} \quad 4 \] ### Conclusion: Thus, the expression \(3 - \cos \theta + \cos \left( \theta + \frac{\pi}{3} \right)\) lies in the interval \([2, 4]\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If theta is real then 3 - cos theta + cos (theta + (pi)/(3)) lies in the interval

costheta.cos2theta.cos3theta=1/4

The maximum value of 5costheta+3cos(theta+pi/3)+3 is:

costheta-cos2theta=sin3theta

Find the number of solution of the equation (2sintheta-sin3theta)/(1+costheta)+(3costheta+cos3theta)/(1-sintheta)=4sqrt(2)cos(theta+(pi)/(4)) in the interval (-10pi,8pi].

For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2theta) lies in the interval

Prove that all values of theta: |(sintheta, costheta, sin2theta),(sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin (2theta+(4pi)/3)),(sin (theta- (2pi)/3), cos (theta- (2pi)/3), sin (2theta- (4pi)/3))|=0

Write the interval in which the values of 5cos theta+3cos(theta+(pi)/(3))+3 lie.

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If tan((alphapi)/(4))=cot((betapi)/(4)), then

    Text Solution

    |

  2. The roots of the equation 4x^2-2sqrt5 x +1=0 are .

    Text Solution

    |

  3. The radius of the circle whose are of length 15\ pi cm makes an angle ...

    Text Solution

    |

  4. If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

    Text Solution

    |

  5. If tantheta+tan(theta+pi/3)+tan(theta-pi/3)=ktan3theta then k is equal...

    Text Solution

    |

  6. If cos(theta+phi)= mcos(theta-phi), then prove that tan theta=(1-m)/(1...

    Text Solution

    |

  7. alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != ...

    Text Solution

    |

  8. Let n be a positive integer such that sin(pi/2n) + cos(pi/2n) = sqrt(n...

    Text Solution

    |

  9. cos^(4)theta-sin^(4)theta is equal to

    Text Solution

    |

  10. If tan alpha =m/(m+1) and tan beta =1/(2m+1) , then alpha+beta is equa...

    Text Solution

    |

  11. tan alpha+2tan2alpha+4tan4alpha+8cot8alpha is equal to

    Text Solution

    |

  12. If cos theta-4sintheta=1, the sintheta+4costheta=

    Text Solution

    |

  13. If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

    Text Solution

    |

  14. If A+B=C, then cos^(2)A+cos^(2)B+cos^(2)C-2cosAcosBcosC=

    Text Solution

    |

  15. If 5cosx+12cosy=13, then the maximum value of 5sinx+12siny is (...

    Text Solution

    |

  16. If x=tan15^(@),y=cosec75^(@),z=4sin18^(@)

    Text Solution

    |

  17. For all values of theta,3-costheta+cos(theta+(pi)/(3)) lie in the inte...

    Text Solution

    |

  18. (tan8 0^(@)-tan1 0^(@))/tan70^(@)

    Text Solution

    |

  19. If sinA+sinB=sqrt3(cosB-cosA),then sin3A+sin3B=

    Text Solution

    |

  20. If alpha+beta+gamma=2 theta,then cos theta + cos(theta - alpha) + cos(...

    Text Solution

    |