Home
Class 12
MATHS
int(0)^(pi//4) tan x dx...

`int_(0)^(pi//4) tan x dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan^(6) x dx=

int_(0)^(pi//4) tan^(5) x dx=

Evaluate : int_(0)^(pi//4) tan x . sec x dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

int_0^(pi//4) 2 tan^3 x dx=1-log 2

If I_n = int_0^(pi//4) tan^n x dx , then lim_(n to oo) n [I_n + I_(n -2)] equals :

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

I_n=int_0^(pi//4) tan^n x dx, then lim_(ntooo) n [I_n + I_(n+2)] is equal to (i)1/2 (ii)1 (iii)infty (iv) 0