Home
Class 12
MATHS
For all admissible values of the paramet...

For all admissible values of the parameter 'a' the straight line `2ax+y sqrt(1-a^2)=1` will touch an elipse whose eccentricity is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

For all admissible values of the parameter l'al' the straight line 2ax+y sqrt(1-a^(2))=1 will touch an elipse whose eccentricity is equal to

Show that for all real values of 't' the line 2tx+y sqrt(1-t^(2))=1 touches the ellipse.Find the eccentricity of the ellipse.

Show that for all real values of 't' the line 2tx + ysqrt(1-t^2)=1 touches the ellipse.Find the eccentricity of the ellipse.

Show that for all real values of 't' the line 2tx + ysqrt(1-t^2)=1 touches the ellipse.Find the eccentricity of the ellipse.

The straight line x+y=-sqrt2P will touch the hyperbola 4x^2-9y^2=36 if

The straight line x+y=sqrt2P will touch the hyperbola 4x^2-9y^2=36 if

Prove that the straight line y=x+sqrt((7)/(12)) touches the ellipse.3x^(2)+4y^(2)=1

The straight line x+ y= sqrt(2) p will touch the hyperbola 4x^(2) - 9y^(2) = 36 if-

For all real p, the line 2px+ysqrt(1-p^(2))=1 touches a fixed ellipse whose axex are the coordinate axes The foci of the ellipse are

For all real p, the line 2px+ysqrt(1-p^(2))=1 touches a fixed ellipse whose axex are the coordinate axes The foci of the ellipse are