Home
Class 10
MATHS
यदि एक बारम्बारता बंटन का माध्य 8.1 है ...

यदि एक बारम्बारता बंटन का माध्य `8.1` है तथा `sum f_(i) x_(i) = 132 + 5k , sum f_(i) = 20 , ` है , तो `k =`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find sum f_(i)d_(i) , if bar(d) = 1.2 and sum f_(i) = 25 .

If overline x = 2.1 and sum f_i = 25 , find sum f_i x_i

sum_(i = 1)^n sum_(j = 1)^i sum_(k = 1)^j 1 is equal to

If the mean of a frequency distribution is 8.1 and sumf_ix_i =132 + 5 K, sumf_i = 20 then K =

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

In a frequency distribution, mean is 8.1, sum f_ix_i = 132+5k and sumf_i = 20 . Find the value of k.

If the mean of a frequency distribution is 8.1 and sumf_i x_i=132+5k ,\ \ sumf_i=20 , then k= (a) 3 (b) 4 (c) 5 (d) 6

If the mean of a frequency distribution is 8.1 and sumf_i x_i=132+5k ,\ \ sumf_i=20 , then k= (a) 3 (b) 4 (c) 5 (d) 6