Home
Class 11
MATHS
If a^x=b^y=c^z=d^w then loga(bcd)=...

If `a^x=b^y=c^z=d^w` then `log_a(bcd)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are in G.P.nad a^(x)=b^(y)=c^(z), then log_(b)a=log_(a)c b.log_(c)b=log_(a)c c.log_(b)a=log_(c)b d.none of these

If x ,y ,z are in G.P. and a^x=b^y=c^z , then (log)_b a=(log)_a c b. (log)_c b=(log)_a c c. (log)_b a=(log)_c b d. none of these

If x, y, z are in G.P. and a^x=b^y=c^z , then (a) logba=log_ac (b) log_cb =log_ac (c) log_ba=log_cb (d) none of these

If x,y,z are in G.P.and a^(x)=b^(y)=c^(z), then (a) log ba=log_(a)c(b)log_(c)b=log_(a)c(c)log_(b)a=log_(c)b(d) none of these

If a,b,c,d are in GP and a^x=b^y=c^z=d^u , then x ,y,z,u are in

If a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w) .

If a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w) .

If a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w) .