Home
Class 12
MATHS
If ye^y=x, prove that, dy/dx=y/(x(1+y))...

If `ye^y=x`, prove that, `dy/dx=y/(x(1+y))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y,=x sin y, prove that (dy)/(dx),=(y)/(x(1-x cos y))

If xy = e^(x-y) , prove that dy/dx = (y(x-1))/(x(y+1))

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .

If y=xsiny , prove that (dy)/(dx)=y/(x(1-xcosy))

If y=xsiny , prove that (dy)/(dx)=y/(x(1-xcosy)

if e^(-y)y=x then prove that (dy)/(dx)=(y)/(x(1-y))

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)