Home
Class 12
MATHS
Given A=[(1,3),(2,2)],I=[(1,0),(0,1)]. ...

Given `A=[(1,3),(2,2)],I=[(1,0),(0,1)]`. If `A-lambdaI` is a singular matrix then

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(1,0,2),(5,1,x),(1,1,1)] is a singular matrix then x is equal to

The matrix [(5 ,1 ,0), (3 ,-2 ,-4 ), (6 ,-1 ,-2b)] is a singular matrix, if the value of b is ?

If A = ((1,0,2),(5,1,x),(1,1,1)) is a singular matrix the, what is the value of x ?

The matrix |(1,0,0),(2,1,0),(3,1,1)| is

I: If the matrix A =[(8,-6,2),(-6,7,-4),(2,-4,lamda)] is singular one, then lamda=3 II: If the matrix [(cos theta, sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] is singular then theta=pi//2

Assertion (A) : If the matrix A=[{:(1,3,lambda+2),(2,4,8),(3,5,10):}] is singular , then lambda=4 . Reason (R ) : If A is a singular matrix, then |A|=0