Home
Class 10
MATHS
समद्विबाहु त्रिभुज ABC में AB=AC तथा BD ...

समद्विबाहु त्रिभुज ABC में AB=AC तथा `BD bot AC` हो, तो सिद्ध कीजिए कि `BD^(2)-CD^(2)=2CD.AD`

Promotional Banner

Similar Questions

Explore conceptually related problems

In AD bot BC , prove that AB^(2)+CD^(2)=BD^(2)+AC^(2)

In triangle ABC , angle ABC=90^@ and BD bot AC . If AD = 4 cm and CD =5 cm, then BD is equal to: त्रिभुज ABC में, angle ABC=90^@ तथा BD bot AC है | यदि AD =4 सेमी और CD = 5सेमी है, तो BD किसके बराबर है ?

In triangle ABC, AB=AC and BD is perpendicular to AC. Prove that : BD^(2)-CD^(2)=2CDxxAD

In /_ABC,AB=AC and D is any point on BC , prove that AB^(2)-AD^(2)=BD.CD

In an isosceles DeltaABC,AB=ACandBD_|_AC . Prove that BD^(2)-CD^(2)=2CD.AD .

In an isosceles triangle ABC with AB=AC,BD is perpendicular from B to the side AC. Prove BD^(2)-CD^(2)=2CD.AD

In an isosceles triangle ABC with AB = AC, BD is perpendicular from B to side AC. Prove that BD^(2)-CD^(2)=2CD.AD

In Delta ABC, AB= AC . Side BC is produced to D. Prove that (AD^(2)-AC^(2))=BD*CD .

In Delta ABC, AD_|_ BC . Prove that AB^(2) - BD^(2) =AC^(2) -CD^(2)