Home
Class 12
MATHS
If cosy=xcos(a+y), with cosa!=+-1, prove...

If `cosy=xcos(a+y),` with `cosa!=+-1,` prove that `(dy)/(dx)=(cos^2(a+y))/(sina)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cosy=xcos(a+y) , where cosa!=-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cosy = xcos(a+y) , with cos a ne +-1 , prove that dy/dx = (cos^2(a+y))/sina

If cos y = x cos (a + y) with cos a != +- 1 . Prove that (dy)/(dx)=cos^2(x+a)/sina

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .