Home
Class 12
MATHS
" Gus & "int(-pi)^( pi)f(x)dx=0" iz "z" ...

" Gus & "int_(-pi)^( pi)f(x)dx=0" iz "z" is an "rarr" timetion "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

int_(0)^(pi) x f (sin x) dx is equal to

int_(-pi)^(pi)(sin^(75)x+x^(125))dx=0

STATEMENT-1 : int_(-(pi)/(2))^((pi)/(2))sin(log(x+sqrt(1+x^(2))))dx=0 and STATEMENT-2 : int_(-a)^(a)f(x)dx=0 if f(x) is an even function

The integral int_(0)^( pi)f(sin x)dx is equivalent to

If f(x) = sin(lim_(t rarr 0)(2x)/picot^(-1) (x/t^2)) , then int_(-(pi)/(2))^((pi)/(2))f(x) dx is equal to (where , x ne0 )

If f(x) = sin(lim_(t rarr 0)(2x)/picot^(-1) (x/t^2)) , then int_(-(pi)/(2))^((pi)/(2))f(x) dx is equal to (where , x ne0 )

The integral int_(0)^(pi) x f(sinx )dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to