Home
Class 12
MATHS
Given that z^2 - 10z + 25 = 9, what is z...

Given that `z^2 - 10z + 25 = 9`, what is z?

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that |z+2|=|z-2|

Consider the given equation 11 z^10 + 10 i z^9 + 10 i z - 11 =0 , then |z| is

Consider the given equation 11 z^10 + 10 i z^9 + 10 i z - 11 =0 , then |z| is

Consider the given equation 11 z^10 + 10 i z^9 + 10 i z - 11 =0 , then |z| is

(z + 5)^2 = z^2 + 25

Factorise: 3z ^(2) - 10z + 8

Suppose z satisfies the equation z^(2) + z + 1 = 0."Let" omega = (z+(1)/(z))^(2) + (z^(2) + (1)/(z^(2)))^(2) + (z^(3) + (1)/(z^(3)))+...+(z^(9) + (1)/(z^(9)))^(2) then |omega + sqrt(301) i| is equal to ____________

If z = 3-5i then show that z^3 - 10z^2 +58z-136=0

If 4 x^(2) + 9y^(2) + z^(2) + 49 = 12 ( x+ y + z) , then what is the value of (4x + 9y - z) ?