Home
Class 12
MATHS
If vec a ,\ vec b ,\ vec c are positi...

If ` vec a ,\ vec b ,\ vec c` are position vectors of the vertices `A ,\ B\ a n d\ C` respectively, of a triangle `A B C ,\ ` write the value of ` vec A B+ vec B C+ vec C Adot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a ,\ vec b ,\ vec c are position vectors o the point A ,\ B ,\ a n d\ C respectively, write the value of vec A B+ vec B C+ vec A Cdot

If vec a ,\ vec b ,\ vec c are the position vectors of the vertices of an equilateral triangle whose orthocentre is the origin, then write the value of vec a+ vec b+ vec c

If vec a,vec b,vec c are position vectors o the point A,B, and C respectively,write the value of vec AB+vec BC+vec AC

If vec a,vec b,vec c are the position vectors of the vertices of an equilateral triangle whose orthocentre is t the origin,then write the value of vec a+vec b+vec *

If vec a,vec b and vec c are the position vectors of the vertices A,B and C respect ively,of bigoplus ABC , prove that the perpendicular distance of the vertedx A from the base BC of the triangle ABC is (|vec a xxvec b+vec b xxvec c+vec c xxvec a|)/(|vec c-vec b|)

If vec a,vec b,vec c are the position vectors of the vertices A,B,C of a triangle ABC, show that the area triangle ABCis(1)/(2)|vec a xxvec b+vec b xxvec c+vec c xxvec a| Deduce the condition for points vec a,vec b,vec c to be collinear.

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/(( vec b- vec c)dot( vec d- vec c))=0dot

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec adot vec b+ vec bdot vec c+ vec c dot vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c). vec adot vec b= vec bdot vec c= vec c dot vec a (d). vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0