Home
Class 12
MATHS
[" 17.If "x,y,z" are positive real numbe...

[" 17.If "x,y,z" are positive real numbers show that: "],[qquad sqrt(x^(-1)y)times sqrt(y^(-1)z)times sqrt(z^(-1)x)=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

Show : sqrt( x^-1y) times sqrt( y^-1z ) times sqrt( z^-1x) = 1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

Prove that sqrt(x^(-1)y)xxsqrt(y^(-1)z)xxsqrt(z^(-1)x)=1

If x,y,z are positive real numbers, prove that: sqrt(x^-1 y).sqrt(y^-1z).sqrt(z^(-1)x)=1

Assuming that x,y,z are positive real numbers,simplify each of the following: (sqrt(x^(-3)))^(5) (ii) (sqrt(x))^(-(2)/(3))sqrt(y^(4))-:sqrt(xy^(-(1)/(2)))