Home
Class 11
MATHS
" 2."1^(3)+2^(3)+3^(2)+...+n^(3)=((n(n+1...

" 2."1^(3)+2^(3)+3^(2)+...+n^(3)=((n(n+1))/(2))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

1^(3)+2^(3)+3^(3)+....+n^(3)=((n(n+1))/(2))^(2)

1^(3)+2^(3)+3^(3)+. . .+n^(3)=((n(n+1))/(2))^(2) .

1^(3)+2^(3)+3^(3)+...+n^(3)=n^(2)((n+1)^(2))/(4)

Prove that : 1^(3)+2^(3)+3^(3)++n^(3)={(n(n+1))/(2)}^(2)

1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(3) +3^(3) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

1^(3)+2^(3)+3^(3)+………….+n^(3)=(n^(2)(n+1)^(2))/4 forall n in N.

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......