Home
Class 11
MATHS
If z1, z2 are two complex numbers (z1!=z...

If `z_1, z_2` are two complex numbers `(z_1!=z_2)` satisfying `|z1^2-z2^2|=| z 1^2+ z 2 ^2-2( z )_1( z )_2|` , then a.`(z_1)/(z_2)` is purely imaginary b. `(z_1)/(z_2)` is purely real c. `|a r g z_1-a rgz_2|=pi` d. `|a r g z_1-a rgz_2|=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1, z_2 are two complex numbers (z_1!=z_2) satisfying |z_1^2-z_2^2|=| z_ 1^2+ z _2 ^2-2( z _1)( z _2)| , then a. (z_1)/(z_2) is purely imaginary b. (z_1)/(z_2) is purely real c. |a r g z_1-a rgz_2|=pi d. |a r g z_1-a rgz_2|=pi/2

If z_1, z_2 are two complex numbers (z_1!=z_2) satisfying |z_1^2-z_2^2|=| z_ 1^2+ z _2 ^2-2( z _1)( z _2)| , then a. (z_1)/(z_2) is purely imaginary b. (z_1)/(z_2) is purely real c. |a r g z_1-a rgz_2|=pi d. |a r g z_1-a rgz_2|=pi/2

If (2z_1)/(3z_2) is purely imaginary then |(z_(1)-z_(2))/(z_(1)+z_(2))|

If z_1 , and z_2 be two complex numbers prove that |z_1+z_2|^2+|z_1-z_2|^2=2[|z_1|^2+|z_2|^2]

If (5z_2)/(7z_1) is purely imaginary , then |(2z_1+3z_2)/(2z_1-3z_2)|=

Prove that |z_1+z_2|^2 = |z_1|^2 + |z_2|^2 if z_1/z_2 is purely imaginary.

Prove that |z_1+z_2|^2=|z_1|^2, ifz_1//z_2 is purely imaginary.