Home
Class 12
MATHS
The function f(x) =(xe^(1//x))/(1+e^(1//...

The function `f(x) =(xe^(1//x))/(1+e^(1//x))+sin""1/x" for "x ne 0, f(0)=0" at x=0 is `

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) =(e^(1//x^(2))/(e^(1//x^(2))-1)" for "x ne 0,f(0)=1" at x =0 is"

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x)=x sin ""1/x"for "x ne 0, f(0)=0" then at x"=0, f(x) is

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

The function f(x) =[(x-1)/(1+e^(1/(x-1))]]" for "x ne 1, f(1)=0" at x=1 is"

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

Examine the continuity of the function f(x) = {((e^((1)/(x)))/(1 + e^((1)/(x)))",","if " x ne 0),(0",","if" x = 0):} at x= 0