Home
Class 12
MATHS
If x =a cos ^(3) theta, y= a sin ^(3) th...

If `x =a cos ^(3) theta, y= a sin ^(3) theta then (d^(2) y)/( dx ^(2)) at theta = pi //4` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = (pi)/(2) is …….

If x = a cos^(3)(Theta), y = a sin^(3)(Theta) find (d^(2)y)/(dx^(2)) .

If x=sintheta,y=sin^(3)theta then (d^(2)y)/(dx^(2)) at theta=(pi)/(2) is . . .

if x=a cos^(4) theta, y= a sin^(4) theta, "then" (dy)/(dx)"at" theta=(3pi)/(4) is

if x=a cos^(4) theta, y= a sin^(4) theta, "then" (dy)/(dx)"at" theta=(3pi)/(4) is

If x = a cos^4 theta , y = a sin^4 theta then (dy)/(dx) at theta = (3 pi)/4 is

If x = a(1+ cos theta), y = a (theta + sin theta) , then (d^(2)y)/(d x^(2)) at theta = (pi)/(2) is

If x = a sin^3 theta, y = a cos^3 theta , find (d^2y)/(dx^2) at theta = pi/4