Home
Class 12
MATHS
tan(cot^(-1)x) is equal to...

`tan(cot^(-1)x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(cot^(-1)(tan(cos^(-1)x))) is equal to a) x b) sqrt(1-x^2) c) 1/x d) none of these

sin(cot^(-1)(tan(cos^(-1)x))) is equal to a x b sqrt(1-x^(2)) c) (1)/(x) d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to cot^(-1)x (b) cot^(-1)1/x tan^(-1)x (d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

cos[tan^(-1){sin(cot^(-1)x)}] is equal to

sin cot^(-1) tan cos^(-1) x is equal to :

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to