Home
Class 11
MATHS
sinh^(-1)((x)/(sqrt(1-x^(2))))=...

sinh^(-1)((x)/(sqrt(1-x^(2))))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2"sinh"^(-1)((a)/(sqrt(1-a^(2))))=log((1+x)/(1-x)) then x =

If 2 "Sinh"^(-1) (a/sqrt(1-a^2)) = log ((1+x)/(1-x)) , then x =

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

If x+sqrt(x^(2)-1)+(1)/(x+sqrt(x^(2)+1))=20 then x^(2)+sqrt(x^(4)-1)+(1)/(x^(2)+sqrt(x^(4)-1))=

int_(-1)^(1)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))/(sqrt(1+x+x^(2))+sqrt(1-x+x^(2)))dx=

If x=(1)/(2)(sqrt(a)+(1)/(sqrt(a))) , then show that (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=(a-1)/(2) .

Evalute the following integrals int (" sinh x " + (1)/(sqrt(x^(2) - 1)) ) " dx, |x| " gt 1

sinh(cosh^(-1)x)=

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=(A)cosh^(-1)x+sin^(-1)x+c(B)cosh^(-1)x+cos^(-1)x+c(C)sinh^(-1)x+sin^(-1)x+c(D)sinh^(-1)x+cos^(-1)x+c