Home
Class 12
MATHS
Prove that : tan^(-1)1/5+tan^(-1)1/7+ta...

Prove that : `tan^(-1)1/5+tan^(-1)1/7+tan^(-1)1/3+tan^(-1)1/8=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

Prove that tan^(-1) (1/8) +tan^(-1) (1/5) =tan^(-1) (1/3)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9) tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4 tan^(-1)(3/4)+tan^(-1)(3/5)-tan^(-1)(8/19)=pi/4

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4

Prove that : tan^-1(1/3) + tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/8) = pi/4

Prove that tan^(-1)3/4+tan^(-1)3/5-tan^(-1)8/19=pi/4 .

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4