Home
Class 12
MATHS
sin^(-1)(2cos^(2)x-1)+cos^(-1)(1-2sin^(2...

`sin^(-1)(2cos^(2)x-1)+cos^(-1)(1-2sin^(2)x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

f_(1)(x)=sin^(-1)(cos(sin^(2)x)),f_(2)(x)=cos^(-1)(sin(cos^(2)x)),f_(3)(x)=sin^(-1)(cos^(2)x)),f_(4)(x)=cos^(-1)(sin^(2)x)* Then which of the following is/are correct?

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

f(x)=sqrt(sin(cos x))+ln(-2cos^(2)x+3cos x+1)+e^(cos^(-1))((2sin x+1)/(2sqrt(2sin x)))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

sin^(2)(cos^(-1)x)+cos^(2)(sin^(-1)(sqrt(1-x^(2)))) = ________ (0ltxlt1)