Home
Class 12
MATHS
The value of int-1^3 [tan^-1(x/(x^2+1))+...

The value of `int_-1^3 [tan^-1(x/(x^2+1))+tan^-1((x^2+1)/x)]dx=` (A) `pi/2` (B) `2pi` (C) `pi` (D) `pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_-1^1 sin^-1(x/(1+x^2))dx= (A) pi/4 (B) pi/2 (C) pi (D) 0

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

Choose the correct answerThe Value of int_(-pi/2)^(pi/2)(x^3+xcosx+tan^5x+1)dx is(A) 0 (B) 2 (C) pi (D) 1

The value of int_0^(pi/2)dx/(1+tan^3x) is

int _ (-2)^(1) (tan^(-1) ((x)/(x^(2) +1))+tan^(-1) ((x^(2) +1)/( x))) dx is (i) (pi)/(2) (ii)-(pi)/(2) (iii) pi (iv) -pi