Home
Class 9
MATHS
int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x...

int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^((1)/(3))+C," where "C" is constant of integration,then "f(x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to A. ( 3 ) /( x ^ 3 ) B. - ( 1 ) / ( 2x ^ 3 ) C. - ( 1 ) / ( 2 x ^ 2 ) D. - (1 )/(6x ^ 3 )

If int(dx)/(x^(3)(1+x^(6))^(2//3)) = xf(x)(1+x^(6))^(1//3)+ C Where C is a constant of inergration, then the function f(x) is equal to :-

If I=int(dx)/(x^(3)(x^(8)+1)^(3//4))=(lambda(1+x^(8))^((1)/(4)))/(x^(2))+c (where c is the constant of integration), then the value of lambda is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration