Home
Class 10
MATHS
[0.4hat i+0.8hat j+chat k" represents a ...

[0.4hat i+0.8hat j+chat k" represents a unit vector when "c" is "],[[" A "-0.2]],[[B,sqrt(0.2)]],[" C "sqrt(0.8)],[[" D "," 0"]]

Promotional Banner

Similar Questions

Explore conceptually related problems

0.4 hat(i)+0.8 hat(j) + c hat(k) represents a unit vector when c is :

0.4 hat(i)+0.8 hat(j) + c hat(k) represents a unit vector when c is :

A non-zero vector vec a is such that its projections along vectors ( hat i+ hat j)/(sqrt(2)),(- hat i+ hat j)/(sqrt(2)) and hat k are equal, then unit vector along vec a is a. (sqrt(2) hat j- hat k)/(sqrt(3)) b. ( hat j-sqrt(2) hat k)/(sqrt(3)) c. (sqrt(2))/(sqrt(3)) hat j+( hat k)/(sqrt(3)) d. ( hat j- hat k)/(sqrt(2))

A non-zero vector vec a is such that its projections along vectors ( hat i+ hat j)/(sqrt(2)),(- hat i+ hat j)/(sqrt(2)) and hat k are equal, then unit vector along vec a is (sqrt(2) hat j- hat k)/(sqrt(3)) b. ( hat j-sqrt(2) hat k)/(sqrt(3)) c. (sqrt(2))/(sqrt(3)) hat j+( hat k)/(sqrt(3)) d. ( hat j- hat k)/(sqrt(2))

A non-zero vector vec a is such that its projections along vectors ( hat i+ hat j)/(sqrt(2)),(- hat i+ hat j)/(sqrt(2)) and hat k are equal, then unit vector along vec a is a. (sqrt(2) hat j- hat k)/(sqrt(3)) b. ( hat j-sqrt(2) hat k)/(sqrt(3)) c. (sqrt(2))/(sqrt(3)) hat j+( hat k)/(sqrt(3)) d. ( hat j- hat k)/(sqrt(2))

A non-zero vector vec a is such that its projections along vectors (hat i+hat j)/(sqrt(2)),(-hat i+hat j)/(sqrt(2)) and hat k are equal,then unit vector along vec a is (sqrt(2)hat j-hat k)/(sqrt(3))b(hat j-sqrt(2)hat k)/(sqrt(3)) c.(sqrt(2))/(sqrt(3))hat j+(hat k)/(sqrt(3))d.(hat j-hat k)/(sqrt(2))

bar(A)=0.5hat(i)+0.4hat(j)+chat(K) The value of c for which bar(A) is unit vector is :

If ABCD is a parallelogram, vec A B=2 hat i+4 hat j-5 hat k and vec A D= hat i+2 hat j+3 hat k , then the unit vector in the direction of B D is 1/(sqrt(69))( hat i+2 hat j-8 hat k) (b) 1/(69)( hat i+2 hat j-8 hat k) 1/(sqrt(69))(- hat i-2 hat j+8 hat k) (d) 1/(69)(- hat i-2 hat j+8 hat k)

The projection of the vector hat i+ hat j+ hat k along the vector of hat j is 1 b. 0 c. 2 d. -1 e. -2

If theta is the angle between the vectors 2 hat i-2 hat j+4 hat k\ a n d\ 3 hat i+ hat j+2 hat k , then sintheta= 2/3 b. 2/(sqrt(7)) c. (sqrt(2))/7 d. sqrt(2/7)