Home
Class 12
MATHS
|[1,1,1],[a,b,c],[a^(3),b^(3),c^(3)]|=(a...

|[1,1,1],[a,b,c],[a^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding prove that abs([1,1,1],[a,b,c],[a^3,b^3,c^3])=(a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants prove the following. abs[[1,1,1],[a,b,c],[a^3,b^3,c^3]]=(a-b)(b-c)(c-a)(a+b+c)

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a-b)(a+b+c)

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

Match the following from List - I to List - II {:("List-I","List-II"),((I)|{:(1,1,1),(a,b,c),(bc,ca,ab):}|=,(a)(a-b)(b-c)(c-a)),((II)|{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3)):}|=,(b)(a-b)(b-c)(c-a)abc),((III)|{:(1,1,1),(a,b,c),(a^(3),b^(3),c^(3)):}|=,(c)(a-b)(b-c)(c-a)(a+b+c)):}

The value of the determinant /_\=|(1,1,1),(a,b,c),(a^3,b^3,c^3)| is (A) (a-b)(b-c)(c-a)(a+b+c) (B) abc(a+b)(b+C)(c+a) (C) (a-b)(b-c)(c-a) (D) none of these

If a,b,are distinct,show that [[1,1,1a,b,ca^(3),b^(3),c^(3)]]=(b-c)*(c-a)*(a-b)(a+b+c)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)