Home
Class 9
MATHS
Verify n(AcupBcupC)=n(A)+n(B)+n(C)-n(Aca...

Verify `n(AcupBcupC)=n(A)+n(B)+n(C)-n(AcapB)-n(BcapC)-n(AcapC)+n(AcapBcapC)` for the following sets A = {1, 3, 5, 6, 8}, B = {3, 4, 5, 6) and C = {1, 2, 3, 6}

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify n(AcupBcupC)=n(A)+n(B)+n(C)-n(AcapB)-n(BcapC)-n(AcapC)+n(AcapBcapC) for the following sets. (i) A{a, c, e, f, h}, B = {c, d, e, f} and C = {a, b, c, f} (ii) A = {1, 3, 5} B = {2, 3, 5, 6} and C = {1, 5, 6, 7}.

If n(A)=3,n(B)=5 and n(AcapB)=2, then: n(AxxB)=

For any three sets A,B C, prove that : n(AuuBuuC)=[n(A)+n(B)+n(C)+n(AcapBcapC)]-[n(AcapB)+n(BcapC)+n(AcapC)] .

If A = (1, 2, 3, 4), B =(3, 4, 5, 6), find n(AcupB)xx n(AcapB)xxn(p(A)) .

If n(A)=10,n(B)=6 and n( C )=5 for three disjoint sets A, B, C then n(A uu B uu C) equals

Set A= {1,2,3,4}, B= {2,4} then verify that n(A xx B) = n(A) n(B) .

A,B,C are three finite sets such that n(A)=17,n(B)=13,n(C)=15, n(AcapB)=9 , n(BcapC)=4 , n(CcapA)=5 and n(S)=50, n(AcapBcapC)=3 .find n(AcapB^c capC^c) , n(BcapA^c capC^c) , n(CcapA^c capB^c) , n(AcapBcapC)^c

If A , B and C are three non - empty finite sets such that n (A) =19 , n (B) = 15 , n (C ) =17, n(capB)=11,n(BcapC)=6,n(CcapA)=7andn(AcapBcapC)=5 . Also n (U) =50. (i) n(AcapB^(c)capC^(c)) (ii) n(BcapC^(c)capA^(c)) (iii) n(CcapA^(c)capB^(c)) (iv) n(CcapBcapC^(c)) (v) n(BcapCcapA^(c)) (vi) n(CcapAcapB^(c)) (vii) n(AuuBuuC) (viii) n((AuuBuuC)^(c)) .

If n(A) = 10,n(B) = 6 and n( C ) =5 for three disjoint sets A,B,C then n (A cup B cup C) equals