Home
Class 12
MATHS
Given f(x) = ([{|x|}]e^(x^2){[x+{x}]})/...

Given `f(x) = ([{|x|}]e^(x^2){[x+{x}]})/((e^(1/x^2)-1)sgn(sinx)` for `x != 0 , 0 for x=0` where (x) is the fractional pat function, [x] is the step up finction and sgnt's) is the signum function then, f(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sgn(cos 2x - 2 sin x + 3) , where sgn () is the signum function, then f(x)

If f(x)=sgn(cos 2x - 2 sin x + 3) , where sgn () is the signum function, then f(x)

If f(x)=sgn(cos 2x - 2 sin x + 3) , where sgn () is the signum function, then f(x)

If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional part function and [.] denotes greatest integer function and sgn(x) is a signum function)

If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional part function and [.] denotes greatest integer function and sgn(x) is a signum function)

If f(x)={x^(2{e^((1)/(x))}),x!=0k,x=0 is continuous at x=0, where {^(*)} represents fractional part function,then

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

If f(x)={(x)/(1+e^((1)/(x))) for x!=0,0f or x=0 then the function f(x) is differentiable for