Home
Class 12
MATHS
Simplify each of the following: cos^(-1...

Simplify each of the following: `cos^(-1)(3/5cosx+4/5sinx)` , where `-(3pi)/4lt=xlt=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify each of the following: cos^(-1)((3)/(5)cos x+(4)/(5)sin x), where -(3 pi)/(4)<=x<=(pi)/(4)

cos^(-1)((3cosx-4sinx)/(5))

Simplify : cos^-1{3/5cosx+4/5sinx}

Find the simplified form of cos^(-1)(3/5cosx+4/5sinx),"where "x in[(-3pi)/4,pi/4] .

Simplify each of the following: sin^(-1)((sinx+cosx)/(sqrt(2))),\ pi/4

Simplify each of the following: sin^(-1)((sinx+cosx)/(sqrt(2))),\ pi/4 < x < (5pi)/4 (ii) cos^(-1)((sinx+cosx)/(sqrt(2))), (5pi)/4 < x < (9pi)/4

cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4) ltx lt(pi)/(4)

Simplify cos^-1(3/5cosx + 4/5 sin x), x in (-(2pi)/(3) , (pi)/(4))

Express each of the following in the simplest form: tan^(-1){(cosx)/(1-sinx)} ,where -pi/2 < x < pi/2 (ii) tan^(-1)((cosx-sinx)/(cosx+sinx)) , -pi/4 < x < pi/4

cos^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4) lt x lt (5pi)/4