Home
Class 12
MATHS
x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))...

`x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t^(2))

Find dy/dx: x=(2at)/(1+t^2), y=(a(1-t^2))/(1+t^2)

Find dy/dx if x=(2at)/(1+t^2) , y=(a(1-t^2))/(1+t^2)

Find (dy)/(dx) , when x=(2t)/(1+t^2) and y=(1-t^2)/(1+t^2)

Find the derivatives of the following : x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2))

If x = ( 2 t)/( 1 + t^(2)), y = (1 - t^(2))/( 1 + t ^(2)) then find ( dy)/( dx) at t = 2

x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)) " then " (dy)/(dx) is

If x = (2at)/(1 + t^2) , y = (a(1-t^2) )/(1 + t^2) , where t is a parameter, then a is

The area (in sq. units) enclosed between the curve x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)), AA t in R and the line y=x+1 above the line is