Home
Class 12
MATHS
The value of Lim(n->oo) (1^6+2^6+3^6...n...

The value of `Lim_(n->oo) (1^6+2^6+3^6...n^6)/((1^2+2^2+3^2+...n^2) (1^3+2^3+...n^3))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(nrarroo) [(1^6 + 2^6 + 3^6…..+n^6)/n^7]

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))