Home
Class 11
MATHS
If f(x)="log"(1+x)/(1-x) , then prove th...

If `f(x)="log"(1+x)/(1-x)` , then prove that:
`f((2x)/(1+x^(2)))=2f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = log [(1+x)/(1-x)] , the prove that f[(2x)/(1+x^2)] =2f(x)

If f:R-(pm1)toR is defined by f(x)=log|(1+x)/(1-x)| , then show that f((2x)/(1+x^(2)))=2f(x) .

If f(x) = log_e ((1+x)/(1-x)) , prove that f((2x)/(1+x^2))=2f(x) .

If f(x) =log((1+x)/(1-x)) then prove that: f((x_(1)+x_(2))/(1+x_(1)x_(2)))=f(x_(1)) + f(x_(2))

If f:R-{pm1}rarrR is defined by f(x)=log|(1+x)/(1-x)|, "thenS.T "f((2x)/(1+x^(2)))=2f(x)

If f(x)=log((1+x)/(1-x)) show that f((2x)/(1+x^(2)))=2(f(x))

If f(x)=log_e.(1+x)/(1-x) , show that f((2x)/(1+x^2))=2f(x) .

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to