Home
Class 11
MATHS
int(7x^(8)+8x^(7))/((1+x+x^(8))^(2))dx=f...

int(7x^(8)+8x^(7))/((1+x+x^(8))^(2))dx=f(x)+c," (wheres c is constant) then "f(x)can" be "

Promotional Banner

Similar Questions

Explore conceptually related problems

int (7x^(8)+8x^(7))/((1+x+x^(8))^(2))dx=f(x)+c rArr f(x)=

int (5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx=

int1/(7x^2-8)dx

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

int(7x-8)/(x(x-1)^(2))dx

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

int(dx)/(8-7x^2)=

if int xe^(2x) dx = e^(2x).f(x)+c , where c is the constant of integration, then f(x) is

If I=int(dx)/(root(3)(x^((5)/(2))(1+x)^((7)/(2))))=kf(x)+c , where c is the integration constant and f(1)=(1)/(2^((1)/(6))) , then the value of f(2) is

If I=int(dx)/(x^(3)(x^(8)+1)^(3//4))=(lambda(1+x^(8))^((1)/(4)))/(x^(2))+c (where c is the constant of integration), then the value of lambda is equal to