Home
Class 12
MATHS
[" 15."(x)/(9-4x^(2))," 16."e^(2x+)],[e^...

[" 15."(x)/(9-4x^(2))," 16."e^(2x+)],[e^(" tan "^(-1)x),2x]

Promotional Banner

Similar Questions

Explore conceptually related problems

int(2e^(5x)+e^(4x)-4e^(3x)+4e^(2x)+2e^(x))/((e^(2x)+4)(e^(2x)-1)^(2))dx= a) "tan"^(-1)(e^(x))/(2)-(1)/(e^(2x)-1)+C b) "tan"^(-1)e^(x)-(1)/(2(e^(2x)-1))+C c) "tan"^(-1)(e^(x))/(2)-(1)/(2(e^(2x)-1))+C d) 1-"tan"^(-1)((e^(x))/(2))+(1)/(2(e^(2x)-1))+C

If y=e^(2x)tan^(-1)2x,"then " dy/dx=

int (e^(x))/((1 + e^(2x)) tan^(-1) (e^(x)) ) dx =

Prove that : 1/6tan^(-1)""(2x)/(1-x^2)+1/9tan^(-1)""(3x-x^2)/(1-3x^2)+1/12 tan^(-1)""(4x-4x^3)/((1-6x^2+x^4))= tan^(-1)x

int e^(x) (1+tan x + tan^(2) x) dx

Let I = int (e^x)/(e^(4x)+e^(2x)+1)dx, J=int (e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then , for an arbitrary constant c, the value of J-1 euqals :

If int(dx)/(e^(2x)+e^(-2x))=(A)/(842)tan^(-1)e^(2x)+C then A equals...

int (e^(x) (x^(2) tan^(-1) x + tan^(-1) x + 1))/( x^(2) + 1) dx is