Home
Class 11
MATHS
[" (b) If the roots of "ax^(2)+bx+c=0" d...

[" (b) If the roots of "ax^(2)+bx+c=0" differ from those of "Ax^(2)+Bx+c=0" by a constant,show "],[" that "(b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation ax^2+bx+c=0 differ by K then b^(2)-4ac=

If alpha,beta are the roots of ax^(2)+bx+c=0 then those of ax^(2)+2bx+4c=0 are

If alpha , beta are the roots of ax^(2) +bx+c=0, ( a ne 0) and alpha + delta , beta + delta are the roots of Ax^(2) +Bx+C=0,(A ne 0) for some constant delta , then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2)) .

If alpha,beta are the roots of ax^(2)+2bx+c=0 and alpha+delta,beta+delta be those of Ax^(2)+2Bx+C=0 then prove that (b^(2)-ac)/(B^(2)-AC)=((a)/(A))^(2)

If alpha, beta are the roots of ax^(2)+2bx+c=0 and alpha +delta, beta + delta are those of Ax^(2)+2Bx+C=0 , then prove that (b^(2)-ac)/(B^(2)-AC)= ((a)/(A))^(2)

If alpha,beta are the roots of ax^(2)+bx+c=0,(a!=0) and alpha+delta,beta+delta are the roots of Ax^(2)+Bx+C=0,(A!=0) for some constant delta then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2))

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and alpha+delta,beta+delta are the roots of the equation Ax^(2)+Bx+C=0 then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2)) for some constant value of delta

If roots of ax^(2)+bx+c=0 are alpha,beta and roots of Ax^(2)+Bx+C=0 are alpha+k,beta+k .then prove that ((B^(2)-4AC))/((b^(2)-4ac))=(A/a)^(2)

If a=c=4b , then the roots of ax ^(2) + 4 bx + c =0 are