Home
Class 12
MATHS
x^(2)e^(-x)" uibnitz'xthe orem "...

x^(2)e^(-x)" uibnitz'xthe orem "

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to 'x'

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to x:

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to 'x'

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .

If f: R to R defined by f(x) =(e^(x^(2)) -e^(-x^(2)))/(e^(x^(2)) +e^(-x^(3))) , then f is

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

If f (x) =(e^(x) -e ^(-x))/( e ^(x) +e^(-x)) +2, then the value of f ^(-1) (x) is-

int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))dx=g(x)e^(e^x+e^(-x)) , then find g(0) .

int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))dx=g(x)e^(e^x+e^(-x)) , then find g(0) .