Home
Class 12
MATHS
sin^(3)x +sin^(3)(x-(2pi)/3) +sin^(3)(x+...

`sin^(3)x +sin^(3)(x-(2pi)/3) +sin^(3)(x+(2pi)/3)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(3)x+sin^(3)(x+(2 pi)/(3))+sin^(3)(x+(4 pi)/(3)) then the primitive of f(x)w.r.t.x is

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

35 .Value of sin^(2)x+sin^(2)(x+pi/3)+sin^(2)(x-pi/3) is equal to

Prove that sin3x + sin ^ (3) (2 (pi) / (3) + x) + sin ^ (3) (4 (pi) / (3) + x) = - (3) / (4) sin3x

The extreme values of sin^(2) ((pi)/(3)+x) + sin^(2) ((pi)/(3) -x) is

Prove that cos^(2)+x+cos^(2) (x+pi/3)+cos^(2)(x-pi/3)=3/2 and hence find the values of sin^(2)x +sin^(2) (x+pi/3)+sin^(2) (x-pi/3)

The inequation 2sin^(2)(x-(pi)/3)-5sin(x-(pi)/3)+2gt0

Prove that the value of each the following determinants is zero: |sin^2(x+(3pi)/2)sin^2(x+(5pi)/2)sin^2(x+(7pi)/2)sin^(x+(3pi)/2)sin^(x+(5pi)/2)sin^(x+(7pi)/2)sin^(x-(3pi)/2)sin^(x- (5pi)/2)sin^(x-(7pi)/2)|

Prove that the value of each the following determinants is zero: |sin^2(x+(3pi)/2)sin^2(x+(5pi)/2)sin^2(x+(7pi)/2)| |sin^.(x+(3pi)/2)sin^.(x+(5pi)/2)sin^.(x+(7pi)/2) | |sin^.(x-(3pi)/2)sin^.(x-(5pi)/2)sin^.(x-(7pi)/2)|