Home
Class 11
MATHS
8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=...

`8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

8sin(x/8)cos(x/2)cos(x/4)cos(x/8) is equal to

8sin.x/8.cos.x/2.cos.x/4.cos.x/8=

intcos.(x)/(16)cos.(x)/(8)cos.(x)/(4)cos.(x)/(2)sin.(x)/(16)dx=

intcos.(x)/(16)cos.(x)/(8)cos.(x)/(4)cos.(x)/(2)sin.(x)/(16)dx=

(sin x)/(sin x)=lambda cos(x)/(8)-cos(x)/(4)cos(x)/(2), then lambda =

Lim_(x to 0){"cos"((x)/(2))cos((x)/(4))cos((x)/(8))....cos((x)/(2^(n)))}=

Integrate the functions (sin^(8)-cos^(8)x)/(1-2sin^(2)x cos^(2)x)

If int (sin^(8)x-cos^(8)x)/(1-2sin^(2)cos^(2)x)dx=A sin 2x+B, then A=

int sin x*cos x*cos2x*cos4x*cos8x*cos16xdx=

int (sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx =