Home
Class 10
MATHS
sin^(4)theta-cos^(4)theta=1-2cos^(2)thet...

sin^(4)theta-cos^(4)theta=1-2cos^(2)theta

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)=1

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

1+sin^(2)theta,sin^(2)theta,sin^(2)thetacos^(2)theta,1+cos^(2)theta,cos^(2)theta4sin4 theta,4sin4 theta,1+4sin4 theta]|=0

Prove that: sin^4 theta - cos^4 theta= 1-2 cos^2 theta .

If : sin^(4)theta+cos^(4)theta+sin^(2)theta*cos^(2)theta=1-u^(2), "then" : u=

Solve cos^(4)theta-sin^(4)theta=cos^2theta

If sin theta+sin^(2)theta+sin^(3)theta=1, then prove that cos^(6)theta-4cos^(4)theta+8cos^(2)theta=4

Show that cos^(4)theta-sin^(4)theta=cos2theta