Home
Class 11
MATHS
" If "y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+.....

" If "y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+.....+(x^(n))/(n!)," then "(dy)/(dx)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+(x^(n))/(n!) , then show that (dy)/(dx)+(x^(n))/(n!)=y

If y=1+x+(x^(2))/(2!)+(x^(2))/(3!)+……+(x^(n))/(n!) then (dy)/(dx) =…………

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)++(x^(n))/(n!), show that (dy)/(dx)-y+(x^(n))/(n!)=0

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+ . . .+(x^(n))/(n!) , prove that (dy)/(dx)+(x^(n))/(n!)=y

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.