Home
Class 11
MATHS
Show that sqrt3=1+1/3+(1/3)*(3/6)+(1/3)*...

Show that `sqrt3=1+1/3+(1/3)*(3/6)+(1/3)*(3/6)*(5/9)+.......`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 1 + 1/3 + (1.3)/(3.6) + (1.3.5)/(3.6.9) + ….. = sqrt3

Show that 1 + 1/3 + (1.3)/(3.6) + (1.3.5)/(3.6.9) + ….. = sqrt3

Show that 1 + 1/2.(3/5) + (1.3)/(2.4) (3/5)^2 + (1.3.5)/(2.4.6) (3/5)^3 + …… = sqrt([5/2])

Show that 1 + 1/2.3/5 + (1.3)/(2.4) (3/5)^2 + (1.3.5)/(2.4.6) (3/5)^3 + …… = sqrt([5/2])

If z=(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+.... then

The sum of the series: 1+(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+(1.3.5.7)/(3.6.9.12+ ---- is

Show that 1 + 2/3.1/2 + (2.5)/(3.6) (1/2)^2 + (2.5.8)/(3.6.9) (1/2)^3 + ….. = root(3)4

Which term of the GP sqrt(3), 1/sqrt(3), 1/(3sqrt(3)), 1/(9sqrt(3)) , ... Is 1/(729sqrt(3)) ?

5(1)/(6)-3(1)/(4)+3(1)/(3)+4