Home
Class 12
MATHS
|[(a^(2)+b^(2))/(c),c,c],[a,(b^(2)+c^(2)...

|[(a^(2)+b^(2))/(c),c,c],[a,(b^(2)+c^(2))/(a),a],[b,b,(c^(2)+a^(2))/(b)]|" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

|[a,a^(2),b+c],[b,b^(2),c+a],[c,c^(2),a+b]| is equal to

Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b c

Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b c

|((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(a^2+c^2)/b)| equal to : (A) 4abc (B) a^2+b^2+c^2 (C) (a+b+c)^2 (D) None of These

|((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(a^2+c^2)/b)| equal to : (A) 4abc (B) a^2+b^2+c^2 (C) (a+b+c)^2 (D) None of These

In triangleABC , the expression (b^(2)-c^(2))/(asin(B-C)) + (c^(2)-a^2)/(bsin(C-A)) +(a^(2)-b^(2))/(csin(A-B)) is equal to

In triangleABC , the expression (b^(2)-c^(2))/(asin(B-C)) + (c^(2)-a^2)/(bsin(C-A)) +(a^(2)-b^(2))/(csin(A-B)) is equal to

((a+b)^(2))/((b-c)(c-a))+((b+c)^(2))/((a-b)(c-a))+((c+a)^(2))/((a-b)(b-c))

The determinant |[a^2, a^2-(b-c)^2,bc],[b^2,b^2-(c-a)^2,ca],[ c^2,c^2-(a-b)^2,ab]| is divisible by- a. a+b+c b. (a+b)(b+c)(c+a) c. a^2b^2c^2 d. (a-b)(b-c)(c-a)