Home
Class 13
MATHS
" IIlustration "47:" If "a+b=1," and "a,...

" IIlustration "47:" If "a+b=1," and "a,b>0," then prove that "(a+(1)/(a))^(2)+(b+(1)/(b))^(2)>=(25)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b=1,a>0, prove that (a+(1)/(a))^(2)+(b+(1)/(b))^(2)>=(25)/(2)

If a + b = 1, a gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b = 1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b - 1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a,b, and c are in G.P.then prove that (1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot

If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot