Home
Class 12
MATHS
Suppose for every integer n, . underset(...

Suppose for every integer `n, . underset(n)overset(n+1)intf(x)dx = n^(2)`. The value of `underset(-2)overset(4)intf(x)dx` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

underset1overset2int 3x^2dx =???

Estimate the value of underset(0)overset(1)e^(x^(2))dx by using underset(0)overset(1)e^(x)dx .

(d)/(dx)[intf(x)dx]=

Let [t] denote the greatest integer le t. Then the value of 8 underset(-1/2)overset(1)int [2x]+|x| dx is ____________

Evaluate (a). int_(0)^(2)(x-1)dx (b). underset(0)overset(2)(x-1)dx