Home
Class 11
MATHS
int(0)^(oo)(x)/(1+x^(4))dx=...

`int_(0)^(oo)(x)/(1+x^(4))dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)underset(0)overset(oo)int dx"then"n (I_(1))/(I_(2))=

int_(0)^(oo)(1)/(1+e^(x))dx=

int_(0)^(oo)(1)/(3+x^(2))dx

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

int_(1)^(oo)(dx)/(x^(2))

int_(0)^(oo) (x)/(1-x)^(3//4)dx=

The value of int_(0)^(oo)(dx)/(1+x^(4)) is (a) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x) (b) (pi)/(2sqrt(2))( c) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x^(4))(d)(pi)/(sqrt(2))

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx