Home
Class 11
MATHS
Let (:a(n):) be a sequence given by a(n+...

Let `(:a_(n):)` be a sequence given by `a_(n+1)=3a_(n)-2*a_(n-1)` and `a_(0)=2,a_(1)=3` then the value of `sum_(n=1)^(oo)(1)/(a_(n)-1)` equals
(A) `1`
(B) `(1)/(2)`
(C) `2`
D) `4`

Promotional Banner

Similar Questions

Explore conceptually related problems

For a sequence a_(n),a_(1)=2 If (a_(n+1))/(a_(n))=(1)/(3) then find the value of sum_(r=1)^(oo)a_(r)

Define a sequence (a_(n)) by a_(1)=5,a_(n)=a_(1)a_(2)…a_(n-1)+4 for ngt1 . Then lim_(nrarroo) (sqrt(a_(n)))/(a_(n-1))

If a_(1)=2 and a_(n)-a_(n-1)=2n(n>=2), find the value of a_(1)+a_(2)+a_(3)+....+a_(20)

Let a sequence be defined by a_(1)=1,a_(2)=1 and a_(n)=a_(n-1)+a_(n-2) for all n>2, Find (a_(n+1))/(a_(n)) for n=1,2,3,4

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_(n)=a_(n-1)+a_(n-2),n>2 Find (a_(n+1))/(a_(n)) for n=1,2,3,4,5

If the sequence {a_(n)} satisfies the recurrence a_(n+1)=3a_(n-1),n>=2,a_(0)=1,a_(1)=3 then a_(2007)=

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_(n)=a_(n-1)+a_(n-2),n>2 Find (a_(n+1))/(a_(n)),f or n=5

The fibonacct sequence is defined by 1=a_(1) = a_(2) and a_(n-1) + a_( n-1) , n gt 1 Find (a_(n+1))/(a_(n)) " for " n =1 ,2,34,5,

For a sequence {a_(n)},a_(1)=2 and (a_(n+1))/(a_(n))=(1)/(3) then sum_(r=1)^(20)a_(r) is