Home
Class 11
MATHS
If f(1)=1,f^(')(1)=3 then the derivative...

If `f(1)=1,f^(')(1)=3` then the derivative of `y=f(f(f(f(x))))` at `x=1` is `M` .Then the value of `|(M)/(9)-1|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is

If f(1)-1,f'(1)=3, then the value of derivative of f(f(f(x))+(f(x))^(2) at x=1 is

If f(1)=3,f'(1)=-(1)/(3), then the derivative of {x^(11)+f(x)}^(-2) at x=1, is

If f(x)=(x)/(x-1)=(1)/(y) then the value of f(y)

If f(x)=(x+1)/(x-1) , then the value of f(f(2)) is

If f(x)=x^(2) then the value of (f(1.1)-f(1))/(1.1-1)

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If f(x)=(1)/(1-x) , then the derivative of the composite function f[f{f(x)}] is equal to

If f(x)=(1-x)/(1+x) ,x>0 then the least value of f(f(x))+f{f(1/x)} is _______

If f(x)=((1)/(x)+1)/((1)/(x)-1) ,then the value of f(x)+f(-x) is: